DHT11で温度と湿度を計ってみた

つぶやき

Acquire and display information from the temperature and humidity sensor DHT11 connected to Raspberry Pi Pico

https://raw.githubusercontent.com/d2r2/go-dht/master/docs/DHT11.pdf

Single bus usually require an external one is about 4.7 k Ω pull-up resistors, so that when the bus is idle, its status as a high level.

# This code is for reading temperature and humidity from a DHT11 sensor using MicroPython on an ESP8266 or ESP32 board.
# Make sure to install the DHT library for MicroPython if you haven't already.

import dht  # Import the DHT sensor library
from machine import Pin  # Import Pin class to control GPIO
import time  # Import time module for delays

# Initialize the DHT11 sensor
# The DHT11 data pin is connected to GPIO6 (you can change this as needed)
dht11 = dht.DHT11(Pin(6))

# Continuously read and display temperature and humidity
while True:
    try:
        # Trigger the sensor to take a measurement
        dht11.measure()

        # Read temperature from the sensor (in degrees Celsius)
        temp = dht11.temperature()

        # Read humidity from the sensor (in percent)
        hum = dht11.humidity()

        # Display the readings in a formatted way
        print(f"Temperature: {temp:.1f}*C")  # e.g., "Temperature: 24.0°C"
        print(f"Humidity   : {hum:.1f}%")  # e.g., "Humidity   : 60.0%"

    except Exception as e:
        # If an error occurs (e.g., sensor not connected or checksum error), print error
        print("Failed to read sensor:", e)

    # Wait for 1 second before the next reading
    time.sleep(1)

SSD1306 OLED (Organic Light-Emitting Diode) display module

# Import required libraries
import dht                    # Library for DHT11 temperature and humidity sensor
from machine import Pin, I2C  # Pin and I2C classes from machine module for GPIO and I2C communication
import time                   # For adding delays between sensor readings

import ssd1306                # SSD1306 OLED display driver library

# Initialize the DHT11 sensor
# The data pin of DHT11 is connected to GPIO6 (GP6 on Raspberry Pi Pico)
dht11 = dht.DHT11(Pin(6))

# Initialize the I2C interface and SSD1306 OLED display
# The display is connected using I2C with:
# - SCL (clock line) on GPIO17 (GP17)
# - SDA (data line) on GPIO16 (GP16)
# The screen resolution is 128x64 pixels
i2c = I2C(scl=Pin(17), sda=Pin(16))
oled = ssd1306.SSD1306_I2C(128, 64, i2c)

try:
    # Start an infinite loop to repeatedly read data from the sensor and display it
    while True:
        try:
            # Measure temperature and humidity using the DHT11 sensor
            dht11.measure()
            temp = dht11.temperature()  # Temperature in Celsius
            hum = dht11.humidity()      # Humidity in percentage

            # Clear the OLED display before showing new data
            oled.fill(0)

            # Display temperature and humidity on the OLED screen
            oled.text(f"Temp : {temp:.1f}*C", 0, 0)   # Display temperature at top-left
            oled.text(f"Humi : {hum:.1f} %", 0, 16)   # Display humidity below it

            # Send the buffer to the display
            oled.show()

            # Also print the values to the serial console for debugging/logging
            print(f"Temperature: {temp:.1f}*C")
            print(f"Humidity   : {hum:.1f} %")

        except Exception as e:
            # If reading the sensor fails (e.g., connection issue or checksum error)
            # Print the error to the console and show error on the OLED
            print("Failed to read sensor:", e)
            oled.fill(0)
            oled.text("Sensor Error!", 0, 0)
            oled.show()
        
    # Wait for 1 second before taking the next reading
        time.sleep(1)
    
except KeyboardInterrupt:
    # When script is manually stopped (e.g., Ctrl+C), clear the OLED
    print("Script stopped by user. Clearing OLED display.")
    oled.fill(0)
    oled.show()

SSD1306 OLED display driver

# MicroPython SSD1306 OLED driver, I2C and SPI interfaces

from micropython import const
import framebuf


# register definitions
SET_CONTRAST = const(0x81)
SET_ENTIRE_ON = const(0xA4)
SET_NORM_INV = const(0xA6)
SET_DISP = const(0xAE)
SET_MEM_ADDR = const(0x20)
SET_COL_ADDR = const(0x21)
SET_PAGE_ADDR = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP = const(0xA0)
SET_MUX_RATIO = const(0xA8)
SET_IREF_SELECT = const(0xAD)
SET_COM_OUT_DIR = const(0xC0)
SET_DISP_OFFSET = const(0xD3)
SET_COM_PIN_CFG = const(0xDA)
SET_DISP_CLK_DIV = const(0xD5)
SET_PRECHARGE = const(0xD9)
SET_VCOM_DESEL = const(0xDB)
SET_CHARGE_PUMP = const(0x8D)


# Subclassing FrameBuffer provides support for graphics primitives
# http://docs.micropython.org/en/latest/pyboard/library/framebuf.html
class SSD1306(framebuf.FrameBuffer):
    def __init__(self, width, height, external_vcc):
        self.width = width
        self.height = height
        self.external_vcc = external_vcc
        self.pages = self.height // 8
        self.buffer = bytearray(self.pages * self.width)
        super().__init__(self.buffer, self.width, self.height, framebuf.MONO_VLSB)
        self.init_display()

    def init_display(self):
        for cmd in (
            SET_DISP,  # display off
            # address setting
            SET_MEM_ADDR,
            0x00,  # horizontal
            # resolution and layout
            SET_DISP_START_LINE,  # start at line 0
            SET_SEG_REMAP | 0x01,  # column addr 127 mapped to SEG0
            SET_MUX_RATIO,
            self.height - 1,
            SET_COM_OUT_DIR | 0x08,  # scan from COM[N] to COM0
            SET_DISP_OFFSET,
            0x00,
            SET_COM_PIN_CFG,
            0x02 if self.width > 2 * self.height else 0x12,
            # timing and driving scheme
            SET_DISP_CLK_DIV,
            0x80,
            SET_PRECHARGE,
            0x22 if self.external_vcc else 0xF1,
            SET_VCOM_DESEL,
            0x30,  # 0.83*Vcc
            # display
            SET_CONTRAST,
            0xFF,  # maximum
            SET_ENTIRE_ON,  # output follows RAM contents
            SET_NORM_INV,  # not inverted
            SET_IREF_SELECT,
            0x30,  # enable internal IREF during display on
            # charge pump
            SET_CHARGE_PUMP,
            0x10 if self.external_vcc else 0x14,
            SET_DISP | 0x01,  # display on
        ):  # on
            self.write_cmd(cmd)
        self.fill(0)
        self.show()

    def poweroff(self):
        self.write_cmd(SET_DISP)

    def poweron(self):
        self.write_cmd(SET_DISP | 0x01)

    def contrast(self, contrast):
        self.write_cmd(SET_CONTRAST)
        self.write_cmd(contrast)

    def invert(self, invert):
        self.write_cmd(SET_NORM_INV | (invert & 1))

    def rotate(self, rotate):
        self.write_cmd(SET_COM_OUT_DIR | ((rotate & 1) << 3))
        self.write_cmd(SET_SEG_REMAP | (rotate & 1))

    def show(self):
        x0 = 0
        x1 = self.width - 1
        if self.width != 128:
            # narrow displays use centred columns
            col_offset = (128 - self.width) // 2
            x0 += col_offset
            x1 += col_offset
        self.write_cmd(SET_COL_ADDR)
        self.write_cmd(x0)
        self.write_cmd(x1)
        self.write_cmd(SET_PAGE_ADDR)
        self.write_cmd(0)
        self.write_cmd(self.pages - 1)
        self.write_data(self.buffer)


class SSD1306_I2C(SSD1306):
    def __init__(self, width, height, i2c, addr=0x3C, external_vcc=False):
        self.i2c = i2c
        self.addr = addr
        self.temp = bytearray(2)
        self.write_list = [b"\x40", None]  # Co=0, D/C#=1
        super().__init__(width, height, external_vcc)

    def write_cmd(self, cmd):
        self.temp[0] = 0x80  # Co=1, D/C#=0
        self.temp[1] = cmd
        self.i2c.writeto(self.addr, self.temp)

    def write_data(self, buf):
        self.write_list[1] = buf
        self.i2c.writevto(self.addr, self.write_list)


class SSD1306_SPI(SSD1306):
    def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
        self.rate = 10 * 1024 * 1024
        dc.init(dc.OUT, value=0)
        res.init(res.OUT, value=0)
        cs.init(cs.OUT, value=1)
        self.spi = spi
        self.dc = dc
        self.res = res
        self.cs = cs
        import time

        self.res(1)
        time.sleep_ms(1)
        self.res(0)
        time.sleep_ms(10)
        self.res(1)
        super().__init__(width, height, external_vcc)

    def write_cmd(self, cmd):
        self.spi.init(baudrate=self.rate, polarity=0, phase=0)
        self.cs(1)
        self.dc(0)
        self.cs(0)
        self.spi.write(bytearray([cmd]))
        self.cs(1)

    def write_data(self, buf):
        self.spi.init(baudrate=self.rate, polarity=0, phase=0)
        self.cs(1)
        self.dc(1)
        self.cs(0)
        self.spi.write(buf)
        self.cs(1)


__version__ = '0.1.0'

コメント